

Postselecting probabilistic finite state recognizers and verifiers

University of Latvia Faculty of computing PhD program student

Maksims Dimitrijevs, Abuzer Yakaryılmaz

Our scope

Different bounded-error probabilistic models: Error bound ε ($0 \le \varepsilon < \frac{1}{2}$):

- if $w \in L$, w is accepted with probability 1- ε ;
- if $w \notin L$, w is rejected with probability 1- ϵ .

Deterministic Turing machines can recognize only countably many languages. How many resources is enough for probabilistic models to define uncountably many languages?

Restricted 2-way input head

- 2-way model.
- Sweeping model.
- Restarting realtime model.

Postselection

Postselection is the ability to give a decision by assuming that the computation is terminated with pre-determined outcome(s) and discarding the rest of the outcomes. Final probabilities:

$$\frac{a(w)}{a(w) + r(w)}$$
 and $\frac{r(w)}{a(w) + r(w)}$

Restarting realtime PFAs = Postselecting realtime PFAs

Realtime PostPFA

$$P = (\Sigma, S, \delta, s_I, s_{pa}, s_{pr})$$

- Σ the input alphabet,
- S the finite set of states,
- δ : S x $\Sigma \cup \{ \triangleright, \triangleleft \}$ x S $\rightarrow [0,1]$ the transition function,
- $s_1 \in S$ the initial state,
- $s_{pa} \in S$ and $s_{pr} \in S$ are the postselecting accepting and rejecting states, respectively.

Recognition of a language

Language $L \subseteq \Sigma^*$ is said to be recognized by a PostPFA P with error bound ε if:

- any member is accepted by P with probability at least 1-ε,
- any non-member is rejected by P with probability at least 1-ε.

One-way private-coin IPS

- Interactive proof system the prover and probabilistic verifier.
- Private-coin the prover does not know the probabilistic outcomes of the verifier.
- One-way the whole responses of the prover can be seen as an infinite string and this string is called as (membership) certificate. The automaton reads the provided certificate in one-way mode.

PostPFA verifier

$$V = (\Sigma, \Upsilon, S, \delta, s_I, s_{pa}, s_{pr})$$

- Σ the input alphabet,
- Y the certificate alphabet,
- S the finite set of states,
- δ: S x Σ∪{▷,⊲} x Y x S x {0,1} →[0,1] the transition function,
- $s_1 \in S$ the initial state,
- $s_{pa} \in S$ and $s_{pr} \in S$ are the postselecting accepting and rejecting states, respectively.

Verification of a language

- Language $L \subseteq \Sigma^*$ is said to be verified by a PostPFA verifier V with error bound ε if:
- for any member w ∈ L, there exists a certificate, say c_w, such that V accepts w with probability at least 1-ε,
- for any non-member w ∉ L and for any certificate c ∈ Y[∞], V always rejects w with probability at least 1-ε.

Additional memory

A PFA can be extended with:

- integer counter (PCA), ?=0, +{-1,0,1},
- work tape (PTM).

EQUAL

w=0^m10ⁿ EQUAL = $\{0^m 10^m \mid m > 0\}$

$$Pr[A] = x^{2m+2n}$$
 $Pr[R] = \left(\frac{x^{4m} + x^{4n}}{2}\right)$

EQUAL

 $EQUAL = \{0^m | m > 0\}$ w=0^m10ⁿ if m = n, then $Pr[A] = Pr[R] = x^{4m}$ else, $\frac{Pr[R]}{Pr[A]} = \frac{\frac{x^{4m} + x^{4n}}{2}}{x^{2m+2n}} = \frac{x^{2m-2n}}{2} + \frac{x^{2n-2m}}{2} > \frac{1}{2x^2}$ Accept with pr. Pr[A], reject with pr. x*Pr[R]. $\frac{x^{-1}}{1+x^{-1}} = \frac{1}{x+1}$ $\frac{(2x)^{-1}}{1+(2x)^{-1}} = \frac{1}{2x+1}$

EQUAL-BLOCKS = { $0^{m_1}10^{m_1}10^{m_2}10^{m_2}1\cdots 10^{m_t}10^{m_t} | t > 0$ }

 $w = 0^{m_1} 10^{n_1} 10^{m_2} 10^{n_2} 1 \cdots 10^{m_t} 10^{n_t}$

EQUAL-BLOCKS(f)

EQUAL-BLOCKS(f) = { $0^{m_1}10^{f(m_1)}10^{m_2}10^{f(m_2)}1\cdots 10^{m_t}10^{f(m_t)} | t > 0$ } f(m)=am+b, a≥0, b≥0 $w = 0^{m_1}10^{n_1}10^{m_2}10^{n_2}1\cdots 10^{m_t}10^{n_t}$

$$Pr[A] = \underbrace{\left(x^{2f(m_1)+2n_1}\right)}_{a_1} \underbrace{\left(x^{2f(m_2)+2n_2}\right)}_{a_2} \cdots \underbrace{\left(x^{2f(m_t)+2n_t}\right)}_{a_t}}_{a_t}$$
$$Pr[R] = \underbrace{\left(\frac{x^{4f(m_1)}+x^{4n_1}}{2}\right)}_{r_1} \underbrace{\left(\frac{x^{4f(m_2)}+x^{4n_2}}{2}\right)}_{r_2} \cdots \underbrace{\left(\frac{x^{4f(m_t)}+x^{4n_t}}{2}\right)}_{r_t}}_{r_t}$$

LOG

 $LOG = \{010^{2^{1}}10^{2^{2}}10^{2^{3}}\cdots 0^{2^{m-1}}10^{2^{m}} \mid m > 0\}$

 $0^{2^0} 10^{m_1} 10^{m_2} 1 \dots 10^{m_t}$

LOG

Fact. If a binary language L is recognized by a bounded-error PTM in space s(n), then the binary language LOG(L) is recognized by a bounded-error PTM in space log(s(n)), where

 $LOG(L) = \{0(1w_1)0^{2^1}(1w_2)0^{2^2}(1w_3)0^{2^3}\cdots 0^{2^{m-1}}(1w_m)0^{2^m} \mid w = w_1\cdots w_m \in L\}$

LOG

Corollary. If a binary language L is recognized by a bounded-error PostPTM in space s(n), then the binary language LOG(L) is recognized by a bounded-error PostPTM in space log(s(n)).

Corollary. If a binary language L is recognized by a bounded-error PostPCA in space s(n), then the binary language LOG(L) is recognized by a bounded-error PostPCA in space log(s(n)).

UPOWER

UPOWER =
$$\{0^{2^m} \mid m > 0\}$$

The expected certificate for the member is:

Verification with perfect completeness.

UPOWERk

 $UPOWERk = \{0^{2^{km}} \mid m > 0\}$

Verification with perfect completeness.

USQUARE

USQUARE = $\{0^{m^2} \mid m > 0\}$

The expected certificate for the member is:

 $a^{m_1}b^{m_2}a^{m_3}\cdots d^{m_t}$ \$\$*

checks: $m_1 = m_2 = \dots = m_t = t + 1$ $|w| = m_1 + m_2 + \dots + m_t + (t + 1)$

Verification with perfect completeness.

Lemma for 64^k coin flips

• Let $x = x_1 x_2 x_3$... be an infinite binary sequence. If a biased coin lands on head with probability $p = 0.x_101x_201x_301$..., then the value x_k can be determined with probability $\frac{3}{4}$ after 64^k coin tosses.

Sweeping PCAs

Fact. Bounded-error linear-space sweeping PCAs can recognize uncountably many languages in subquadratic time.

 $LOG(L) = \{0(1w_1)0^{2^1}(1w_2)0^{2^2}(1w_3)0^{2^3}\cdots 0^{2^{m-1}}(1w_m)0^{2^m} \mid w = w_1\cdots w_m \in L\}$

Corollary. The cardinality of languages recognized by bounded-error sweeping PCAs with arbitrary small non-constant space bound is uncountably many.

DIMA3

 $\texttt{DIMA3} = \{0^{2^0} 10^{2^1} 10^{2^2} 1 \cdots 10^{2^{6k-2}} 110^{2^{6k-1}} 11^{2^{6k}} (0^{2^{3k}-1} 1)^{2^{3k}} \mid k > 0\}$

Recognition with bounded-error linear-space PostPCA.

DIMA3(I)

 $\begin{aligned} \mathtt{DIMA3} &= \{ 0^{2^0} 10^{2^1} 10^{2^2} 1 \cdots 10^{2^{6k-2}} 110^{2^{6k-1}} 11^{2^{6k}} (0^{2^{3k}-1} 1)^{2^{3k}} \mid k > 0 \} \\ &\mathcal{I} &= \{ I \mid I \subseteq \mathbb{Z}^+ \} \end{aligned}$

Let w_k be the k-th shortest member of DIMA3 for k>0.

$$\texttt{DIMA3}(I) = \{ w_k \mid k > 0 \text{ and } k \in I \}$$

Recognition with bounded-error linear-space PostPCA for any I.

Corollary

Bounded-error linear-space PostPCA can recognize DIMA3(I) for any I.

If a binary language L is recognized by a bounded-error PostPCA in space s(n), then the binary language LOG(L) is recognized by a bounded-error PostPCA in space log(s(n)).

Corollary. The cardinality of languages recognized by bounded-error PostPCAs with arbitrary small non-constant space bound is uncountably many.

UPOWER6(I)

 $\begin{aligned} \text{UPOWER6}(I) &= \{ 0^n \mid n = 2^{6k}, k > 0 \text{ and } k \in I \} \\ \mathcal{I} &= \{ I \mid I \subseteq \mathbb{Z}^+ \} \\ c_w &= \frac{c'_w[1] c'_w[2] c'_w[3] \cdots c'_w[j] \cdots}{c''_w[1] c''_w[2] c''_w[3] \cdots c''_w[j] \cdots} \end{aligned}$

- c' used for UPOWER6,
- c" used for USQUARE.

Results

- If a binary language L is recognized by a bounded-error realtime PostPTM/PostPCA in space s(n), then the binary language LOG(L) is recognized by a bounded-error realtime PostPTM/PostPCA in space log(s(n)).
- Realtime PostPFAs verify UPOWERk, USQUARE with perfect completeness.

Results

- The cardinality of languages recognized by bounded-error realtime PostPCAs with arbitrary small non-constant space bound is uncountably many.
- Bounded-error unary realtime PostPFAs can verify uncountably many languages.

Open question

- Bounded-error 2PFAs can recognize non-context-free languages.
- Bounded-error realtime PostPFAs can define uncountably many languages with the help of a prover/arbitrarily small counter (with a prover even in unary case).

Thank you for your attention! Ďakujem!