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Our scope

Different bounded-error probabilistic models:
Error bound € (0 < € < %):
e ifw € L, wis accepted with probability 1-¢;
o ifwéL, wis rejected with probability 1-¢.

Deterministic Turing machines can recognize only
countably many languages. How many resources
iIs enough for probabilistic models to define
uncountably many languages?
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Restricted 2-way input head

e 2-way model.
e Sweeping model.
e Restarting realtime model.
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Postselection

Postselection is the ability to give a decision by
assuming that the computation is terminated with
pre-determined outcome(s) and discarding the rest
of the outcomes. Final probabillities:

a(w) r(w)

— —— and — —
alw)+r(w) alw) + r(w)

Restarting realtime PFAs = Postselecting realtime PFAs

\



Realtime PostPFA

Pi={04, 5,0, 8% B Sur)

e 2 -the input alphabet,

e S -the finite set of states,

e 0. S x 2U{r,<} x S —[0,1] - the transition
function,

* s € S - the initial state,

e S € S and Sor € S are the postselecting

a%acepting and rejecting states, respectively.

\



Recognition of a language

Language LE2* is said to be recognized by a
PostPFA P with error bound ¢ if:

e any member is accepted by P with
probability at least 1-¢,

e any non-member is rejected by P with
probability at least 1-¢.

\



One-way private-coin IPS

e Interactive proof system - the prover and
probabilistic verifier.

e Private-coin - the prover does not know the
probabilistic outcomes of the verifier.

e One-way - the whole responses of the
prover can be seen as an infinite string and
this string is called as (membership)
certificate. The automaton reads the
provided certificate in one-way mode.

\



PostPFA verifier

V = (,7, 5,8, 51, 5pas Spr)

2. - the input alphabet,

Y - the certificate alphabet,

S - the finite set of states,

o S x 2UYr <} x Y x S x {0,1} —[0,1] - the
transition function,

s, € S - the initial state,

s € S and s € S are the postselecting

a%acept|ng and rejectlng states, respectively.

\




Verification of a language

Language LE2" is said to be verified by a

PostPFA verifier V with error bound ¢ if:

e for any member w € L, there exists a
certificate, say c , such that V accepts w
with probability at least 1-¢,

e for any non-member w ¢ L and for any
certificate ¢ € Y™, V always rejects w with
probability at least 1-¢.

\



Additional memory

A PFA can be extended with:
e integer counter (PCA), ?=0, +{-1,0,1},
e work tape (PTM).




EQUAL

w=0m10" EQUAL = {0™10™ | m > 0}

Pr[A] = g*mtn Pr[R] =

\




EQUAL

w=0"m10" EQUAL = {0™10™ | m > 0}

if m = n, then Pr[A] = Pr|R] = pAm

else,
[)r:R: £ lm;'-rm J.'Zm—‘;’n I_‘.-?n—?.m : 1
Pr(A] ax2m+2m 2 T3~ O

Accept with pr. Pr[A], reject with pr. x*Pr[R].

! 1 (2z)1 1
l1+z71 x+1 1+ (2z)~1 2z+1




EQUAL-BLOCKS

EQUAL-BLOCKS = {0™110™!10™210™21 - - - 10™10™* | £ > 0}

W = ())nl 1()!11 1()711‘3 1 ()1221 < ean 1()77'1( 10)1:

Pl’r-‘l] xR (I‘Zml-Fan) (I‘.ng-'f-?rzg) s (';l‘,'.?mr%-‘.?m)
- N — N———— NS ———

aj a2 at

P [R] I-iml i I.lm I.lmg S I»'in-.) I-lmz i I«ln:.
r = LA
2 2 2

g T2 Tt

—




EQUAL-BLOCKS(f)

EQUAL-BLOCKS(f) = {0™110/(m1)10m210/(m2)1 ... 10™:10/™) | t > 0}
f(m) am+b, a=0, b>0
W = 0m1 1()!11 1()7!’22 1 ()I?Ql < A 1()”’2; 1()11:

Pl‘—-‘l] — (I:‘zf (m1)+2n1 ) (',I'-?f': ma2 )+2n2 ) b (I'.?f'f me )+2nq )
- : \
ai as 1y

I»lf{ml ) 1 I-‘lnl I~1fl:m-_)) iq J,-lng I4f( my ) ¢ I~1nf
PriR] = ' -
L 2 2 2

r'y ra "t

—




LOG

LOG = {010?' 10%°10% --- 02" 10*" | m > 0)

0> 10™L10™a1..... 1G™

Pl‘[f’l] sa (;174771.1-1-‘2771-3) (’I-‘lm-'_>+‘2m;; ) . (;1‘.4’71.t_1-f-‘2n-z,)

o Ibnn X8 l.-lm-) Ibmg ' I_4mg I-Smr_l 4 I4nu
P,‘R\ f— ' . N
Sk 2 2 2




LOG

Fact. If a binary language L is recognized by a
bounded-error PTM in space s(n), then the
binary language LOG(L) is recognized by a
bounded-error PTM in space log(s(n)), where

LOG(L) = {0(1w,)0% (1w)0% (1w3)0? - -- 07" (1wm)0*" | w = wy - - - wy, € L}
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LOG

Corollary. If a binary language L is recognized
by a bounded-error PostPTM in space s(n), then
the binary language LOG(L) is recognized by a
bounded-error PostPTM in space log(s(n)).

Corollary. If a binary language L is recognized
by a bounded-error PostPCA in space s(n), then
the binary language LOG(L) is recognized by a
bounded-error PostPCA in space log(s(n)).

\



UPOWER

UPOWER = {0*" | m > 0}
The expected certificate for the member is:

010 .. 10001 O, %G8
lst block 2nd block - m~th block

Verification with perfect completeness.

\



UPOWERKk

UPOWERK = {02 | m > 0}

Verification with perfect completeness.
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USQUARE
USQUARE = {0™ | m > 0}
The expected certificate for the member is:
a™b™a™ .- d™PP”

checks:
my=my=---=m; =1+ 1

w|=my+mo+---+my + (t+ 1)

Verification with perfect completeness.

\



Lemma for 64" coin flips

» Let x = xyx,x5 ... be an infinite binary sequence.
If a biased coin lands on head with probability p =
0.x;01x,01x501 ..., then the value x;, can be

determined with probability % after 64% coin tosses.




Sweeping PCAs

Fact. Bounded-error linear-space sweeping
PCAs can recognize uncountably many
languages in subquadratic time.

LOG(L) = {0(1w,)0% (1w)0% (1w3)0? - -- 07" (1wm)0*" | w = wy - - - wy, € L}

Corollary. The cardinality of Ilanguages
recognized by bounded-error sweeping PCAs
with arbitrary small non-constant space bound is
uncountably many.
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DIMA3

DIMA3 = {0%10%'10%°1---10®" 1102 '1127°(02 '1)2" | k > 0)

Recognition with bounded-error linear-space
PostPCA.

\



DIMA3(1)
DIMA3 = {02102 10%'1---10%" 110®" 11
T={I|ICZ")

Let W, be the k-th shortest member of
DIMAS3 for k>0.

DIMA3(/)={wi |k >0and k € I}

nbK

Recognition with bounded-error linear-space
PostPCA for any |.

\
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Corollary

Bounded-error linear-space PostPCA can recognize
DIMAZ3(I) for any 1.

If a binary language L is recognized by a
bounded-error PostPCA in space s(n), then the
binary language LOG(L) is recognized by a
bounded-error PostPCA in space log(s(n)).

Corollary. The cardinality of languages
recognized by bounded-error PostPCAs with
arbitrary small non-constant space bound is
uncountably many.
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UPOWERG(I)

UPOWER6(I) = {0" | n = 2% k > O and k € I}

I={I|1cZ")

cl1]|cw(2]|[B]] --- | la]] ---

e —————— S ———————————————————— —

Cw = o1 a7 19 AR
("n.".ll Cw ZI ('ml';. ER | ES l, e

e ¢ used for UPOWERGSG,
e ¢’ used for USQUARE.
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Results

e If a binary language L is recognized by a
bounded-error realtime PostPTM/PostPCA in
space s(n), then the binary language LOG(L) is
recognized by a bounded-error realtime
PostPTM/PostPCA in space log(s(n)).

e Realtime PostPFAs  verify UPOWERIK,
USQUARE with perfect completeness.

\



Results

e The cardinality of languages recognized by
bounded-error realtime PostPCAs with arbitrary
small non-constant space bound is uncountably
many.

e Bounded-error unary realtime PostPFAs can
verify uncountably many languages.
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Open question

e Bounded-error 2PFAs can recognize
non-context-free languages.

e Bounded-error realtime PostPFAs can define
uncountably many languages with the help of a
prover/arbitrarily small counter (with a prover
even in unary case).
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Thank you for your
attention!
Dakujem!
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